322 research outputs found

    Simulation of a molecular QCA wire

    Get PDF
    Molecular Quantum Dot Cellular Automata (MQCA) are among the most promising emerging technologies for the expected theoretical operating frequencies (THz), the high device densities and the non-cryogenic working temperature. In this work we simulated a molecular QCA wire, based on a molecule synthesized ad-hoc for this technology. The results discussed are obtained by means of iterative steps of ab-initio calculation

    Optimized Sampling Rate for Voltammetry-Based Electrochemical Sensing in Wearable and IoT Applications

    Get PDF
    The recent advancements in electrochemical measurements are guiding the development of new platforms for in-situ point-of-care monitoring of human-metabolite, markers and drugs. Despite this, the application of Voltammetry-Based Sensing (VBS) techniques is still limited in wearable, portable, or IoT systems. In order to use VBS approaches to measure analytes in small and low-power electronic platforms for diagnostics, several improvements are required. For example, the definition of a method to achieve the right trade-off between sample rate and sensing performance is still missing. To develop a method to define the best sampling rate, we present here an extensive analysis of experimental data to prove that is feasible to detect drugs such as paracetamol by Staircase Cyclic Voltammetry (SCV) or Differential Pulse Voltammetry (DVP) direct detection methods, with low sampling frequency. Our results prove that the proposed method helps the development of systems capable of discriminating the minimum pharmacology concentration of the metabolite under analysis with a massive reduction of the sampling frequency

    TAMTAMS: a flexible and open tool for UDSM process-to-system design space exploration

    Get PDF
    Ultra Deep Sub-Micron (UDSM) processes, as well as beyond CMOS technology choices, influence circuits performance with a chain of consequences through devices, circuits and systems that are difficult to predict. Nonetheless effective design-space exploration enables process optimization and early design organization. We introduce TAMTAMS, a tool based on an open, flexible and simple structure, which allows to predict system level features starting from technology variables. It is modular and based on a clear dependency tree of modules, each related to a model of specific quantities (e.g. device currents, circuit delay, interconnects noise, ....) presented in literature. Models can be compared and sensitivity to parameters observed. We believe our contribution gives a fresh point of view on process-to-system predictors. Though still in development, it already shows flexibility and allows a traceable path of a technology parameter on its way to the system level

    In-vivo proximal monitoring system for plant water stress and biological activity based on stem electrical impedance

    Get PDF
    Population growth and global warming are the main threats to food production. Food security, producing enough food for the entire population, is becoming harder, and new strategies must be applied. Smart agriculture tackles this problem by integrating field sensors and data with the farmers’ knowledge to increase crop yield and reduce resource waste.This paper proposes a system to monitor the plant water stress status. This system monitors the plant directly and does not rely on environmental sensors. Acquired data are sent to a remote server thanks to LoRa communication. The designed system is low-power and relies on a single battery with more than five years of expected lifetime. The system monitors the trunk electrical impedance of plants thanks to a relaxation oscillator with a portion of the trunk in the feedback loop. This way, changes in the impedance are reflected in changes in the oscillator frequency.Two systems were installed directly in the fields and connected to apple trees. Statistical analyses were performed on the acquired data. The correlation between the trunk frequency values and the soil water potential is above 75% for both plants.The proposed system is low-power and low-cost and could be directly adopted in the fields. It can detect the water status of plants directly, avoiding environmental sensors

    Smart Devices and Systems for Wearable Applications

    Get PDF
    Wearable technologies need a smooth and unobtrusive integration of electronics and smart materials into textiles. The integration of sensors, actuators and computing technologies able to sense, react and adapt to external stimuli, is the expression of a new generation of wearable devices. The vision of wearable computing describes a system made by embedded, low power and wireless electronics coupled with smart and reliable sensors - as an integrated part of textile structure or directly in contact with the human body. Therefore, such system must maintain its sensing capabilities under the demand of normal clothing or textile substrate, which can impose severe mechanical deformation to the underlying garment/substrate. The objective of this thesis is to introduce a novel technological contribution for the next generation of wearable devices adopting a multidisciplinary approach in which knowledge of circuit design with Ultra-Wide Band and Bluetooth Low Energy technology, realization of smart piezoresistive / piezocapacitive and electro-active material, electro-mechanical characterization, design of read-out circuits and system integration find a fundamental and necessary synergy. The context and the results presented in this thesis follow an “applications driven” method in terms of wearable technology. A proof of concept has been designed and developed for each addressed issue. The solutions proposed are aimed to demonstrate the integration of a touch/pressure sensor into a fabric for space debris detection (CApture DEorbiting Target project), the effectiveness of the Ultra-Wide Band technology as an ultra-low power data transmission option compared with well known Bluetooth (IR-UWB data transmission project) and to solve issues concerning human proximity estimation (IR-UWB Face-to-Face Interaction and Proximity Sensor), wearable actuator for medical applications (EAPtics project) and aerospace physiology countermeasure (Gravity Loading Countermeasure Skinsuit project)

    Guest Editorial Circuits and Systems for Smart Agriculture and Healthy Foods

    Get PDF
    This Special Issue of the IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS (JETCAS) is dedicated to Circuits and Systems applied to innovative products for the Agriculture and Food value chain
    • 

    corecore